A loop of irregular shape carrying current is located in an external magnetic field. If  wire is flexible it will take the shape of

  • A

    Will remain in same shape

  • B

    Circle

  • C

    Square

  • D

    None of these

Similar Questions

Heart-lung machines and artifical kidney machines employ blood pumps. A mechanical pump can mangle blood cells.Figure represents an electromagnetic pump. The blood is confined to an electrically insulating tube, represented as a rectangle of width $\omega$ and height $h.$ Two electrodes fit into the top and the bottom of the tube. The potential difference between them establishes an electric current through the blood, with current density $J$ over a section of length $L.$ A perpendicular magnetic field exists in the same region. The section of liquid in the magnetic field experiences a pressure increase given by :-

Two long straight wires $P$ and $Q$ carrying equal current $10\,A$ each were kept parallel to each other at $5\,cm$ distance. Magnitude of magnetic force experienced by $10\,cm$ length of wire $P$ is $F_1$. If distance between wires is halved and currents on them are doubled, force $F_2$ on $10\,cm$ length of wire $P$ will be :

  • [JEE MAIN 2023]

A conductor $ABCDE$, shaped as shown, carries a current i. It is placed in the $xy$ plane with the ends $A$ and $E$ on the $x$-axis. $A$ uniform magnetic field of magnitude $B$ exists in the region. The force acting on it will be

A circular current loop of radius a is placed in a radial field $B$ as shown. The net force acting on the loop is

A long straight wire carrying current of $25$ $\mathrm{A}$ rests on a table as shown in figure. Another wire $\mathrm{PQ}$ of length $1$ $\mathrm{m}$, mass $2.5$ $\mathrm{g}$ carries the same current but in the opposite direction. The wire $\mathrm{PQ}$ is free to slide up and down. To what height will $\mathrm{PQ}$ rise ?